A Folding Scheme for Committed Relaxed R1CS
Relaxed R1CS
R1CS is in the format
$$(A \cdot Z) \circ (B \cdot Z)=C \cdot Z$$
In order to enable recursive, i.e., verifying two instance by one, introducing \(E\) and \(u\) in the equation.
$$(A \cdot Z) \circ (B \cdot Z)=u \cdot (C \cdot Z) + E$$
how to committed to an relaxed R1CS?
Committed relaxed R1CS
For sparse matrices \((A,B,C)\), a committed relaxed R1CS is a tuple \((\overline{E},u,\overline{W},x)\) where \(\overline{E}=com(pp_E,E,r_e)\) and \(\overline{W}=com(pp_w,W,r_w)\) such that
$$(A \cdot Z) \circ (B \cdot Z)=u \cdot (C \cdot Z) + E$$
holds where\(Z=(W,x,u)\)
How to fold? my understanding, how to verify one commitment in the same format that automatically verify two actually?
verifier has:
- two commitments \((\overline{E}_1,u_1,\overline{W}_1,x_1)\) and \((\overline{E}_2,u_2,\overline{W}_2,x_2)\)
- public info \((u_1,x_1)\) and \((u_2,x_2)\) and commitments \(\overline{E}_1, \overline{W}_1,\overline{E}_2,\overline{W}_2\)
Folding phase
- prover send \(\overline{T}=com(pp_E,T,r_T)\) and
$$T=AZ_1\circ BZ_2+AZ_2 \circ BZ_1 -u_1\cdot CZ_2 – u_2\cdot CZ_1$$
to the verifier
- Verifer send prover \(r\)
- verifier and prover ouput the folded instance
$$\overline{E}\leftarrow\overline{E}_1+r\cdot \overline{T} + r^2 \overline{E}_2$$
$$u\leftarrow u_1+r\cdot u_2$$
$$\overline{W} \leftarrow \overline{W}_1 +u_2 \overline{W}_2$$
$$x\leftarrow x_1 + r\cdot x_2$$
let us verify that the folding will keep the same structure
- Prover compute the new witness
$$E\leftarrow E_1+r\cdot T + r^2 \cdot E_2$$
\(r_E\leftarrow r_{E_1} +r\cdot r_T + r^2\cdot r_{E_2}\) remember \(T\) is also committed
$$W\leftarrow W_1 + r \cdot W_2$$
$$r_W\leftarrow r_{W_1}+ r\cdot r_{W_2}$$
Nova: An IVC Scheme with Proof Compression
folding for Plonk
https://geometry.xyz/notebook/sangria-a-folding-scheme-for-plonk