the goal is to understand the extra cost (witness column) brought by using different field, in the bus part.
start with lookup_via_challenges_range_constraint.asm
use std::convert::fe;
use std::protocols::lookup::lookup;
use std::math::fp2::from_base;
use std::prover::challenge;
machine Main with degree: 8 {
// Prove a correct decomposition of x into 3-bit limbs
col fixed x = [1, 6, 23, 55, 63, 4, 1, 0];
col witness x_low, x_high;
col fixed BIT3 = [0, 1, 2, 3, 4, 5, 6, 7];
lookup([x_low] in [BIT3]);
lookup([x_high] in [BIT3]);
x = x_low + 8 * x_high;
}
BN254 field
run this command to spell out Logup constraint without field extension.
cargo run pil test_data/std/lookup_via_challenges_range_constraint.asm -o output -f --field bn254
the generated …_opt.pil file:

code and constraint explanation:
Logup constraint:
accumulator initiate:
main::is_first * main::acc = 0;
logup constraint:
(std::prelude::challenge(0, 2) - main::x_low) * (std::prelude::challenge(0, 2) - main::BIT3) * (main::acc' - main::acc) + main::multiplicities * (std::prelude::challenge(0, 2) - main::x_low) = std::prelude::challenge(0, 2) - main::BIT3;
to make it more clear, let “std::prelude::challenge(0, 2)” to be \(\alpha\)
then the equation essentially become:
\((\alpha-x_{low}) \cdot (\alpha – BIT_3)\cdot (acc’-acc)+mul\cdot (\alpha-x_{low})= \alpha – BIT_3\)
divided by \((\alpha-x_{low}) \cdot (\alpha – BIT_3)\) from both side, it becomes:
\(acc’-acc=\frac{1}{\alpha-x_{low}}-\frac{mul}{\alpha – BIT_3}\)
which is Logup constraint.
acc and acc_1 are two columns, for x_low and x_high
stage
pay attention that acc and acc_1 are both for stage 1, which can only be calculated after the challenge is drawn.
Goldilock field
it becomes verbose with many different namespace, let’s focus on the main machine now:

let’s see the logup constraint now:
((std::prelude::challenge(0, 3) - main::x_low) * (std::prelude::challenge(0, 3) - main::BIT3) + 11 * std::prelude::challenge(0, 4) * std::prelude::challenge(0, 4)) * (main::acc' - main::acc) + 11 * (std::prelude::challenge(0, 4) * (std::prelude::challenge(0, 3) - main::BIT3) + (std::prelude::challenge(0, 3) - main::x_low) * std::prelude::challenge(0, 4)) * (main::acc_1' - main::acc_1) + main::multiplicities * (std::prelude::challenge(0, 3) - main::x_low) = std::prelude::challenge(0, 3) - main::BIT3;
(std::prelude::challenge(0, 4) * (std::prelude::challenge(0, 3) - main::BIT3) + (std::prelude::challenge(0, 3) - main::x_low) * std::prelude::challenge(0, 4)) * (main::acc' - main::acc) + ((std::prelude::challenge(0, 3) - main::x_low) * (std::prelude::challenge(0, 3) - main::BIT3) + 11 * std::prelude::challenge(0, 4) * std::prelude::challenge(0, 4)) * (main::acc_1' - main::acc_1) + main::multiplicities * std::prelude::challenge(0, 4) = std::prelude::challenge(0, 4);
it is related to extension field operations, for 2 degree extension field, check this file
The irreducible polynomial is \(x^2 -11\), so the multiplication would be:
BN254 and Goldilock comparison of lookup_via_challenges..asm:
wit cols | fixed col | wit: 2 | logup wit | fixed | pattern | |
BN254 | 6 | 3 | \(x_{low}\), \(x_{high}\) | \(acc, acc_1, \) for \(x_{low}\) for \(x_{high}\) \(mul, mul_1\) total: 4 | \(x\), \(BIT_3\), is_first total: 3 | 2+4 4 is the non-changeable \(x_{low}\), \(x_{high}\) \(mul, mul_1\) |
Goldilock | 12 | 3 | \(x_{low}\), \(x_{high}\) | \(acc, acc_1, \) for \(x_{low}\) \(acc_2, acc_3, \) for \(x_{high}\) \(acc_{next},\) \(acc_{next_1}, \) \(acc_{next_2},\) \(acc_{next_3}, \) \(mul, mul_1\) total: 10 | \(x\), \(BIT_3\), is_first total: 3 | 2*4 + 4 |
M31 | 20 | 3 | ||||
BN254 and Goldilock comparison of keccak.asm:
wit cols | fixed col | stage 1 witness | pattern | |
BN254 bus linker mod | 270 | 125 | \(acc, acc_1, \) total: 48 | |
Goldilock bus linker mode | 453 | 125 | \(acc, acc_1, \) \(acc_2, acc_3, \) total: 230 | |
M31 bus linker mode | 596 | 97 | total: 596 | |
m31 native | 172 | 81 |